19 research outputs found

    Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the rat.

    No full text
    Until recently, conversion of arginine to agmatine by arginine decarboxylase (ADC) was considered important only in plants and bacteria. In the following, we demonstrate ADC activity in the membrane-enriched fraction of brain, liver, and kidney cortex and medulla by radiochemical assay. Diamine oxidase, an enzyme shown here to metabolize agmatine, was localized by immunohistochemistry in kidney glomeruli and other nonrenal cells. Production of labeled agmatine, citrulline, and ornithine from [3H]arginine was demonstrated and endogenous agmatine levels (10(-6)M) in plasma ultrafiltrate and kidney were measured by HPLC. Microperfusion of agmatine into renal interstitium and into the urinary space of surface glomeruli of Wistar-Frömter rats produced reversible increases in nephron filtration rate (SNGFR) and absolute proximal reabsorption (APR). Renal denervation did not alter SNGFR effects but prevented APR changes. Yohimbine (an alpha 2 antagonist) microperfusion into the urinary space produced opposite effects to that of agmatine. Microperfusion of urinary space with BU-224 (microM), a synthetic imidazoline2 (I2) agonist, duplicated agmatine effects on SNGFR but not APR whereas an I1 agonist had no effect. Agmatine effects on SNGFR and APR are not only dissociable but appear to be mediated by different mechanisms. The production and degradation of this biologically active substance derived from arginine constitutes a novel endogenous regulatory system in the kidney

    Stress in Parents of Children With Genetically Determined Leukoencephalopathies: A Pilot Study.

    No full text
    Genetically determined leukoencephalopathies comprise a group of rare inherited white matter disorders. The majority are progressive diseases resulting in early death. We performed a cross-sectional pilot study including 55 parents from 36 families to assess the level of stress experienced by parents of patients with genetically determined leukoencephalopathies, aged 1 month to 12 years. Thirty-four mothers and 21 fathers completed the Parenting Stress Index-4th Edition. One demographic questionnaire was completed per family. Detailed clinical data was gathered on all patients. Statistical analysis was performed with total stress percentile score as the primary outcome. Mothers and fathers had significantly higher stress levels compared with the normative sample; 20% of parents had high levels of stress whereas 11% had clinically significant levels of stress. Mothers and fathers had comparable total stress percentile scores. We identified pediatric behavioral difficulties and gross motor function to be factors influencing stress in mothers. Our study is the first to examine parental stress in this population and highlights the need for parental support early in the disease course. In this pilot study, we demonstrated that using the Parenting Stress Index-4th Edition to assess stress levels in parents of patients with genetically determined leukoencephalopathies is feasible, leads to valuable and actionable results, and should be used in larger, prospective studies
    corecore